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The thermal conductivity of porous materials is a topic
of general interest. It has been part of scientific research
on refractory materials from its very beginning [1–
8]. The increased interest today is partly triggered by
the need to design optimized thermal barrier coatings
[9–14] and substrates for electronic circuit packages
[15, 16]. With no doubt, the best method to obtain
reliable values of the effective thermal conductivity of
porous materials is direct measurement (e.g., using the
laser-flash technique [17]). This is particularly true in
those cases where the microstructure is insufficiently
specified. On the other hand, from the viewpoint of time
and cost savings it might be desirable to have at one’s
disposal a handy estimate of the porosity dependence of
thermal conductivity, e.g., for the purpose of materials
selection and design.

In this contribution we present a modified exponen-
tial relation which may serve as a useful tool for the
approximate prediction of the effective thermal con-
ductivity k of porous materials. For reasons of conve-
nience we assume the voids (usually gas-filled pores)
to be non-conducting. With regard to the expected ac-
curacy of available or measured data this will often be
justified also from a practical point of view. Further-
more, we assume a matrix-inclusion type microstruc-
ture, i.e. closed pores in a matrix with known thermal
conductivity k0. The proposed relation allows a real-
istic estimation of the relative (or “reduced”) thermal
conductivity kr = k/k0.

Apart from the rule of mixtures

kr = 1 − φ (1)

(with φ being the porosity), which is known to be in-
adequate for isotropic materials, one of the most popu-
lar relations for the relative thermal conductivity is the
Maxwell–Eucken relation [1, 2, 18–20 ], which reduces
to the very simple form

kr = 1 − φ

1 + φ

2

, (2)
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when the conductivity of the pore phase is negligible
[21]. Note that Equation 2 is identical to the Hashin–
Shtrikman upper bound for macroscopically isotropic
porous materials [20, 21]. In a recent paper [22], the
Coble–Kingery approach [23–25 ] has been used to
derive another simple predictive relation:

kr = 1 − 3

2
φ + 1

2
φ2. (3)

For small porosities (φ → 0) this relation reduces to
the well-known dilute-limit or self-consistent approxi-
mation [20, 21]

kr = 1 − 3

2
φ (4)

Of course, the linear porosity dependence predicted
by Equation 4 can be expected only for small ranges
of porosity. On the other hand, from Fig. 1 it is ev-
ident, that the nonlinear Coble–Kingery type relation
(3) is too close to the Maxwell–Eucken prediction (2) to
be a significant improvement over the latter, whereas
measured data usually exhibit a significantly steeper
porosity dependence.

Now, in close analogy to Mooney’s classical work
in suspension rheology [26] we invoke the functional
equation approach (cf. [27–29] for its application in
viscosity and elasticity context) to derive a modified
exponential relation which has never been used in ther-
mal conductivity context before. Recall that the total
porosity φ can be subdivided into two fractions, φ1 and
φ2 (neither of them necessarily small),

φ = V1 + V2

V0 + V1 + V2
= V1

V0 + V1 + V2
+ V2

V0 + V1 + V2

= φ1 + φ2, (5)

where V0 is the volume occupied by the matrix phase
and V1 + V2 the total volume occupied by the pores
(i.e., by the two virtual pore fractions). Trivially, the rel-
ative thermal conductivity corresponding to this virtual
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Figure 1 Porosity dependence of relative thermal conductivity; two sets
of measured data (triangles: alumina, squares: zirconia) and three model
predictions (dotted: Maxwell–Eucken/Hashin–Shtrikman upper bound,
dashed: Coble–Kingery, solid: modified exponential)

decomposition can be written as

kr (φ) = kr (φ1 + φ2). (6)

In order to obtain a partial porosity φ1 after “mixing”
with the second fraction, the first fraction of pores to
be added to the dense material (i.e., before the second
fraction is present) must be larger than φ1, by a factor
of (1 − φ2)−1. Thus, obviously, after adding this first
partial volume fraction of pores,

φ12 = V1

V0 + V1
= φ1

1 − φ2
, (7)

the corresponding relative thermal conductivity is
kr(φ12). In principle, following Mooney’s suggestion
[26], the same reasoning applies to the second fraction
with

φ21 = V2

V0 + V2
= φ2

1 − φ1
, (8)

and the corresponding relative thermal conductivity
kr(φ21). Note that this is the key step to arrive at an ex-
ponential relation (and not a power law relation) via the
functional equation approach, cf. [27–29]. The relative
thermal conductivity is then given by a multiplicative
decomposition of the form

kr (φ) = kr (φ12) · kr (φ21), (9)

(cf. [29–31 ] for a more detailed explanation of this
decomposition). Equating (6) and (9) we obtain a func-
tional equation of the form

kr (φ1 + φ2) = kr (φ12) · kr (φ21), (10)

which has a solution of the form

kr = exp

( −Bφ

1 − φ

)
, (11)

where B is an adjustable parameter at this point.

Up to this point we have not made any assumptions
on pore shape or connectivity. However, since in the
case of small porosities (φ → 0), Equation 11 has a
series expansion of the form

exp

( −Bφ

1 − φ

)
≈ 1 − Bφ + · · · , (12)

it is reasonable to relate B with the so-called intrinsic
thermal conductivity [k] defined in [22] as

[k] ≡ − lim
φ→0

kr − 1

φ
. (13)

In the case of spherical pores one may then set B
= [k] = 3/2. Although precisely valid only for spher-
ical pores, this value can be expected to be a reason-
able approximation also for other isometric shapes, cf.
analogous findings in the elasticity context [30]. Thus,
when the thermal conductivity of the matrix phase k0

is reliably known, the modified exponential relation
(11) should provide a parameter-free model prediction
of the effective thermal conductivity k for isotropic
porous materials of a rather general class, at least for
those with matrix-inclusion type microstructure.

In order to underpin this statement with at least one
paradigmatic example, we have tested our model pre-
diction against recently measured data for two types
of oxide ceramics (alumina and zirconia), cf. Fig. 1.
Both types were prepared by starch-consolidation cast-
ing (a new shaping technique for ceramic suspensions
where starch acts as a body-forming agent and a pore-
forming agent) at the ICT Prague [31] and measured by
the laser-flash technique [32] at the ENSCI Limoges.
Principles and details of processing and measurement
can be found elsewhere [33–37]. Potato starch (with
a median size of approx. 50 µm) was used and re-
sulted in an isotropic microstructure with isometric,
nearly spherical, essentially closed pores [38]. The ox-
ide powders, used in this work, were submicron (Sum-
itomo AA04/Japan and Tosoh TZ-3YE/Japan) and the
grain size after sintering still remained 1–2 orders of
magnitude smaller than the pore size.

The thermal conductivities k0 of the matrix materials
were taken to be 33 and 2.9 W/mK for alumina and
zirconia (with 3 mol.% yttria), respectively. Although
these values are based on a recent literature research
[31], and believed to be the most reliable, it is clear that
the uncertainty of these values is still relatively high,
say at least 10% (this value is indicated by the error
bars in Fig. 1). Additionally, it must be kept in mind,
that the value for zirconia is strongly dependent on the
yttria content and the corresponding oxygen vacancy
concentration [39, 40] and can be lower by 30%, say, for
higher yttria content. On the other hand, much lower
values, which also exist in the literature, are almost
always caused by porosity effects.

From Fig. 1, it is evident that the modified expo-
nential relation (11) provides a satisfactory prediction
for porous alumina and porous zirconia ceramics pre-
pared by starch consolidation casting. The prediction
is relatively close to the self-consistent approximation



(dilute approximation), cf. Equation 4, but in contrast
to the latter it is nonlinear and does not predict a perco-
lation threshold. It can expected that the handy relation
(11) will be a useful tool for roughly estimating the
effective thermal conductivity of a rather wide class
of isotropic porous materials. Although it seems that
experimentally measured data for alumina or zirconia
with porosities higher than 50% (whether prepared us-
ing a pore-forming agent or otherwise) are not available
so far in the literature there is no principal limit of valid-
ity for our model, since no approximations have been
invoked for its derivation. We note, however, that the
model presented in this letter is intended to serve as
a guide to overall behavior. With respect to this, the
simplification we made by assuming voids with zero
conductivity appears to be a valid approximation for
most real materials (recall that, e.g., at room temper-
ature the thermal conductivity of air at atmospheric
pressure is approx. 0.025 W/mK, i.e. two orders of
magnitude lower than that of zirconia, one of the ther-
mally most insulating oxide ceramics). Moreover, the
effect of grain boundaries (grain size effect) has not
been taken into account. For refinements of this kind
the reader may refer to [35–37]. Although it seems
that, at least in the case of zirconia, where this topic
has been satisfactorily investigated, grain sizes much
smaller than 100 nm are required to give a sensible ef-
fect [10, 40, 41], it is clear that principally small grain
size can lead to a decrease in the thermal conductivity,
similar to porosity. In a theoretically sound treatment,
however, the grain size effect should be clearly sepa-
rated from the porosity effect. In terms of our letter,
grain size can have an influence both on k0 and k, but
not on kr.
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H AV R DA , Key Eng. Mater. 206/213 (2002) 1969.
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and J . H AV R DA , J. Mater. Sci. Lett. 21 (2002) 1101.
35. S . FAY E T T E, D. S . S M I T H, A. S M I T H and C. M A RT I N ,

J. Eur. Ceram. Soc. 20 (2000) 297.
36. D . S . S M I T H, S . G R A N D J E A N, J . A B S I , S . K A D I E B U

and S . FAY E T T E , High Temp. High Press. 35/36 (2003/2004)
93.

37. D . S . S M I T H, S . FAY E T T E, S . G R A N D J E A N, C . M A R-
T I N , R . T E L L E and T. TO N N E S S E N , J. Amer. Ceram. Soc.
86 (2003) 105.
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